Global stability of multigroup epidemic model with group mixing and nonlinear incidence rates
نویسندگان
چکیده
In this paper, we introduce a basic reproduction number for a multigroup SEIR model with nonlinear incidence of infection and nonlinear removal functions between compartments. Then, we establish that global dynamics are completely determined by the basic reproduction number R0. It shows that, the basic reproduction number R0 is a global threshold parameter in the sense that if it is less than or equal to one, the disease free equilibrium is globally stable and the disease dies out; whereas if it is larger than one, there is a unique endemic equilibrium which is globally stable and thus the disease persists in the population. Finally, two numerical examples are also included to illustrate the effectiveness of the proposed result. 2011 Published by Elsevier Inc.
منابع مشابه
Dynamics of a Delayed Epidemic Model with Beddington-DeAngelis Incidence Rate and a Constant Infectious Period
In this paper, an SIR epidemic model with an infectious period and a non-linear Beddington-DeAngelis type incidence rate function is considered. The dynamics of this model depend on the reproduction number R0. Accurately, if R0 < 1, we show the global asymptotic stability of the disease-free equilibrium by analyzing the corresponding characteristic equation and using compa...
متن کاملGlobal stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence
In this paper, we introduce a basic reproduction number for a multigroup epidemic model with nonlinear incidence. Then, we establish that global dynamics are completely determined by the basic reproduction number R0. It shows that, the basic reproduction number R0 is a global threshold parameter in the sense that if it is less than or equal to one, the disease free equilibrium is globally stabl...
متن کاملStability and Bifurcation of an SIS Epidemic Model with Saturated Incidence Rate and Treatment Function
In this paper an SIS epidemic model with saturated incidence rate and treatment func- tion is proposed and studied. The existence of all feasible equilibrium points is discussed. The local stability conditions of the disease free equilibrium point and endemic equilibrium point are established with the help of basic reproduction number.However the global stabili- ty conditions of these eq...
متن کاملGlobal stability of SIRS epidemic models with a class of nonlinear incidence rates and distributed delays
In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlinear incidence rates and distributed delays. By using strict monotonicity of the incidence function and constructing a Lyapunov functional, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotica...
متن کاملGlobal Stability of Sir Epidemic Models with a Wide Class of Nonlinear Incidence Rates and Distributed Delays
In this paper, we establish the global asymptotic stability of equilibria for an SIR model of infectious diseases with distributed time delays governed by a wide class of nonlinear incidence rates. We obtain the global properties of the model by proving the permanence and constructing a suitable Lyapunov functional. Under some suitable assumptions on the nonlinear term in the incidence rate, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computation
دوره 218 شماره
صفحات -
تاریخ انتشار 2011